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SUMMARY

The paper concerns investigations on the robustness against non-normality of multiple
comparison procedures. The probability of obtaining a division of means which is
compatible with the true division is used as the robustness criterion. Results of
Monte Carlo experiments suggest that the probability of correct decision increases
with the proportion of observations coming from the contaminating distribution.
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1. Introduction
Consider a problem of testing the hypothesis

HOZIJ'l:'“=,uk

of equality of means of k normal distributions. Fisher (1935) proposed an F-test for
this hypothesis. This test is known as a one-way analysis of variance and is based on
the following statistic

_ K- XP/(k-1)
Yoy T (X — Xi)2 /(N — k)

Here X;; denotes the j-th observation from the i—th distribution (j = 1,...,n;), X;
is the arithmetic mean of all observations from the i-th distribution, X stands for
the arithmetic mean of all observations and N = n; + --- + ng. The hypothesis is
rejected if F' > F, ,, where F¢ ,  is a critical value of the F* distribution and
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v = N — k. In the case of rejecting Hy the question arises which of the means may
be considered as equal. This problem is known as a problem of multiple comparisons.
Zieliniski (1994) showed that the F—test is not robust against non-normality. Similar
investigations are of interest for multiple comparison procedures.

There are many different multiple comparison procedures. The most frequently
used in applications are simultaneous confidence intervals of Tukey and of Scheffé,
multiple tests of Newman—Keuls and of Duncan. The above-mentioned and many
other procedures of multiple comparisons are described in Miller (1982) and Hoch-
berg and Tamhane (1988). Procedures of multiple comparisons may give different
homogenous groups. The question is which division is nearest to “reality”. The pro-
bability of obtaining a division of a set of means consistent with reality is considered as
the criterion of goodness of a procedure. This probability will be called the probability
of the correct decision.

There were some simulation studies of this probability for different procedures
(cf. Zielifiski 1991) but always in the case of normality. In what follows we show
results of simulation in a non-normal case.

Suppose that our observations usually follow a normal distribution but occasio-
nally there may appear an “outlier”. This means that we observe a random variable
Z such that

P { Zy with probability 1 — ¢,
Zo with probability ¢,
where Z; is normally distributed N(u,0?), Z, is normally distributed N(u,7%) and
7, and Zs are independent. Such contaminated normal distributions were suggested
by Tukey (1960). Tukey proposed the following model

T(e) = (1 - €)N(u,0%) +eN(p, 7).

This model is referred to as the “Tukey contaminated model”.

We are interested in how much the probability of obtaining the correct division
changes if observations are drawn not from a normal distribution but from a distri-
bution T'(¢). For obvious reasons we assume that 0 < e < 0.5.

2. Procedures

We consider the following procedures of multiple comparisons: simultaneous confi-
dence intervals of Tukey and of Scheffé, Newman-Keuls and Duncan multiple hypo-
thesis test, and the procedure W based on a decision theoretic approach. In what
follows we deal with the balanced case, i.e. n; =---=n; =n.
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Tukey’s simultaneous confidence intervals

Tukey’s simultaneous confidence intervals have the following form:
5 5 s L . )
P{/Li1 — Wi, € (Xi1 - Xi, :I:q,‘c",,,—\/—n_—,> , forall 41,30 =1,...,k, iy # 12} =1-q,

where g, is a critical value of the studentized range. If zero is in the confidence
interval for p; — u;,, then those two means are considered as equal. Applying that
rule to all confidence intervals, a division into homogenous groups is obtained.

Scheffé simultaneous confidence intervals

Scheffé simultaneous confidence intervals have the following form:

- = 2
P{/J,i1 — Wiy € (Xz'1 - X, s ’I_”L-(k— DFI?—l,u) WViia=1,...,k, i 7512} =
1-aq,

where F | , is a critical value of the F distribution. Conclusions are made in the
1
same manner as for Tukey’s simultaneous confidence intervals.

Multiple test of Newman—Keuls

The Newman-Keuls procedure is based on testing hypothesis Hi i Wy, =
oo =y, for all sets of indices {i1,...,im},m = k,k —1,...,2 which are subsets of
{1,...,k}. Hypothesis H;, ;. is rejected if

-\g—ﬁ {max{X; :i € {i1,...,im}} —min{X;:i € {i, - yim}}} 2 65,

where gk, is a critical value of the studentized range. If hypothesis Hj, ... is not
rejected, then the decision is: p; =-- - =p; .

The Newman-Keuls procedure is a stepwise one. It starts with m = k and m
is decreased. In the first step hypothesis Hi,... (which is usually noted as Hp) is
verified. If the hypothesis is rejected, than the procedure goes to the second step,

otherwise it stops and equality of all means is claimed. The second step consists

1im

of testing k subhypotheses piy = -+ = p;_y = pyy; = -+ = i = 1,...,k of
Hy, k. If an i-th hypothesis is rejected, then k — 1 subhypotheses are tested, or
else the set {sy,...,1;_ 1,41, -, 14} is said to be a homogeneous group and none

of the subhypotheses is tested. Next steps consist in testing all the appropriate
subhypotheses of the hypothesis rejected in the previous step. The procedure stops
if there is nothing left to test.



86 D. Rabczenko and W. Zielinski

Multiple test of Duncan

The Duncan procedure differs from the Newman-Keuls procedure in choosing
critical values. Instead of ¢y, ,, ¢, is taken. This means that in the Duncan procedure
the critical value is the same for all the tested hypotheses while in the Newman—Keuls
procedure it depends on the number of compared means.

W procedure

The W procedure is based on the F distribution. Let J = {I1,...,Ip} be
a division of {1,...,k} into disjoint subsets. For J let

S(P,J) ZHZ Z(XJ - Xfi)za

1=1 jEI,'

where

- 1 n 1 _
X = ok ZZXﬂ Tk ZXj
JjeIi 1=1 34
and k; is the number of elements of I;. Let J* be a division into p disjoint subsets
such that S(p, J*) is minimal among S(p,J). The procedure starts with p = 1 and
p is increased till S(p, J*) < s%(k — p)F¢_,,» Where FY is a critical value of the
F distribution with (k — p, v) degrees of freedom. In such a way we obtain a division
J* of a set of means into p disjoint homogenous groups.

3. Criterion

There are many different criteria for comparing procedures of multiple comparisons.
For example, for simultaneous confidence intervals the length of individual confidence
intervals are compared. Because we want to compare different procedures, a criterion
which can be applied to all procedures is needed. Such a criterion is the probability
of obtaining a division of the set of means which is compatible with the true division.

Let s be a real division of a set {1, .., 1t} and let d¢(X) be a division obtained
as a result of applying a procedure { of multiple comparisons (here X denotes the
set of all observations). Note that s is a subset of k—dimensional real space. Our
criterion is

PF{df(X) = Sl{lh, s nu'k} € 3},
where F is the joint distribution of X. This probability depends not only on division
s but also on values of means. Its analytical computation for all sets of means is
impossible, so it was estimated in a Monte Carlo experiment.
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The probability of the correct decision was estimated for all the procedures men-
tioned in Section 2. The procedure is better if the probability is higher.

We are interested in the robustness of the probability of the correct decision of
the procedure £ against the contaminated distribution T'(€). Let P¢(s,€) be the mean
probability of the correct decision for the state s when the underlying distribution is
T(e), i.e.

Pe(s,6) = [+ [ P de(X) = sl -+ g} € s} .. i

We assume that X;; follows the distribution (1 — £)N(g;,0%) +eN(y;,7?) and F(e)
is the joint distribution of all observations.
The robustness at the state s of a procedure £ can be measured by

Pé(s’ 6)
Pg(S,O).

The procedure ¢, will be called more robust than &, if

7‘5(8,6) =

sup |1 —rg (s,6)] < sup |1 —r7g,(s,€)|
0<e<0.5 0<e<0.5

Note that r¢ > 1 if the probability of the correct decision is greater under distri-
bution T'(e) than under the normal distribution, which may be interpreted as a po-
sitive behaviour of the procedure €. Hence, the robustness may be measured by
SUPg<e<0.5(1 — re(s,€)). This expression shows how much a procedure £ looses under
T(e) in comparison to the normal distribution.

Another way of measuring deviations of probability of the correct decision for
the state s of the procedure £ is the efficacy parameter defined by

Pe(s,e) — inf P,
0220.5 e(s,6) = Jnf, Fel(s,€)

foo.s Pe(s,€)de

The efficacy parameter measures oscillations of the probability of the correct decision
relatively to the mean level of the probability. This parameter is an analogue of
a coefficient of variability of a random variable.

4. Experiment

We are interested in how much the probability of obtaining a correct division changes
if observations are drawn from a distribution

T(e) = (1 — €)N(u,0%) +eN(u, 72).
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The r-th moment &, of the distribution equals to (1 —€)8,. + &6/, where §.,6" are the
7-th moments of N(u,0?) and N(u, 7%), respectively. Hence, the mean value of T'(¢)
equals p and its variance is (1 — €)o? + e72.

Our aim was to estimate the probability of a correct decision made by a procedure
of multiple comparisons. So, for given means puq,p,,...,u;, k samples of size n
were drawn from the distributions with appropriate means. Each of the investigated
procedures of multiple comparisons was applied to the set of samples and a division of
the set of means {y,, s, ..., 1, } was obtained. The obtained division was compared
with given means. If the division agreed with the true one, we decided that the
application of a procedure was successful. This procedure was repeated 1000 times
and the probability of the correct decision was estimated as the proportion of correct
decisions.

In the experiment, n = 11, k = 6 and € = 0.0,0.01,0.05,0.1, 0.2, 0.4 were taken.
Variances 02 and 72 were chosen in such a way that the variance of the distribution
was equal to 1.

In many papers it is pointed out that the size of the ANOVA test depends on the
kurtosis of the underlying distribution. The kurtosis of the distribution T'(¢) equals
to 3{(1 — €)o* + er* — 1}. Parameters of T(e) were chosen in such a manner that
kurtosis of all the considered distributions was the same, and equal to 4 (for the
normal distribution kurtosis is 0). Values of the parameters are shown below.

e: 0.01 0.05 0.10 0.20 0.40
o?: 0.88395 0.73509 0.61510 0.42265 0.05719
72: 1248913 6.03322 4.46410 3.30940 2.41421

Since the probability of detecting the true division by a procedure depends neither
on values of means nor on their order, but it does depend on differences between them,
so py =0and py < py < pg < pig < py < pg were chosen. Hence, 11 configurations of
mean values (divisions) were considered. Those configurations are shown in Table 1.

For the numerical experiment values of ’s were needed. Those values were chosen
in such a manner that p; = 0(0.5)5 and conditions of a division are satisfied. For
example, for the division (1 — 3,4, 5,6) the values of means were: p; = py = p3 =0,
g = 0.5(0.5)4, ps = 114(0.5)4.5, pg = ps(0.5)5.

For generating random numbers from the uniform distribution, a 32-bit multipli-
cative generator was applied. This generator was written by the authors. To obtain
normally distributed random numbers the algorithm of Box and Muller (1958) was
applied.
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Table 1. Divisions of means used in the experiment

Symbol Denotes division
(1-6) My ="= g
(1-5,6) Hy = = ls, Ug
(1-4,5-6) Hy == Hyy by = - = g
(1-3,4-6) Py = = g g = = g
(1-4,5,6) Hq = = Uy, U, Mg
(1-3,4-5,6) fiy = = g, fhy = P, g
(1-2,3-4,5-6) K1 = Mo, H3 = [3s s = Ug
(1_3,4a5,6) My == U3, Hgy U5y g
(1 _2:3_4)576) K1 = 2, U3 = U3, By Ke
(1 -2,3,4,5, 6) K1 = Ho, 3, 3, Usy He
(1;2a 3’4a 5a 6) M1,N2,M3,N3,/i57#6

5. Results

Results of the Monte Carlo experiment for all configurations of means are shown in
Table 2. In the table one may find the average probability (multiplied by 1000) of the
correct decision and the relative probabilities with respect to the normal distribution
(i.e. without outliers).

Analysis of the probability of making a correct decision by procedures in de-
pendence on the value of € shows that the probability increases with . It may be
interpreted as a positive behviour: the procedures are better when outliers are pre-
sent. It is easier to detect the true division of means when the number of outliers
increases. Hence, the investigated procedures may be considered as robust against
the presence of outliers. It is clear that

max{re(s,€) : € € {0,0.01,0.05,0.10,0.20,0.40}} = r¢(s, 0.40)

for all divisions s [except (1 — 6)]. So, robustness of the procedure may be estimated
by the numbers given in the last column of Table 2 .

Among the investigated procedures the W procedure seems to be the best for
two reasons. One reason is that ry (s, 0.40) is the smallest, hence it is the most robust
procedure. The second reason is that the average probability of the correct decision
is the highest. There are only three exceptions when the Newman-Keuls procedure
is better than the W procedure.
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Table 2. Results of Monte Carlo simulations for different values of € and different
divisions of means

Average probability Relative to e =0
€: 0.00 0.01 0.05 0.10 0.20 040 0.00 0.01 0.05 0.10 0.20 0.40

Division (1 — 6)

W 957.00 939.00 945.00 947.00 945.00 955.00 1 0.981 0.988 0.990 0.988 0.998
Tukey 944.00 936.00 943.00 952.00 949.00 952.00 1 0.992 0.999 1.009 1.005 1.009
Scheffé 987.00 972.00 980.00 986.00 989.00 986.00 1 0.985 0.993 0.999 1.002 0.999
N-K 944.00 936.00 943.00 952.00 949.00 952.00 1 0.992 0.999 1.009 1.005 1.009
Duncan 990.00 979.00 983.00 993.00 990.00 992.00 1 0.989 0.993 1.003 1.000 1.002
Division (1 — 5, 6)

W 791.20 800.20 792.40 792.70 810.30 834.40 1 1.011 1.002 1.002 1.024 1.055
Tukey 706.00 728.50 715.50 717.50 743.70 776.50 1 1.032 1.014 1.016 1.053 1.100
Scheffé 676.00 707.50 690.00 700.30 723.60 764.20 1 1.047 1.021 1.036 1.070 1.130
N-K 762.10 774.80 769.30 766.60 784.10 813.80 1 1.017 1.009 1.006 1.029 1.068
Duncan 732.70 756.50 744.60 750.60 769.30 804.10 1 1.033 1.016 1.024 1.050 1.097
Division (1 — 4,5 — 6)

w 817.80 830.10 823.50 823.10 840.00 855.20 1 1.015 1.007 1.007 1.027 1.046
Tukey 690.40 708.80 693.10 699.70 717.70 759.10 1 1.027 1.004 1.014 1.040 1.100
Scheffé 657.20 680.10 668.00 673.60 695.70 742.00 1 1.035 1.016 1.025 1.059 1.129
N-K 697.60 714.40 704.60 702.60 723.60 749.20 1 1.024 1.010 1.007 1.037 1.074
Duncan 708.10 723.60 709.40 715.90 733.00 775.10 1 1.022 1.002 1.011 1.035 1.095
Division (1 — 3,4 — 6)

W 826.60 835.30 826.20 836.80 846.80 869.70 1 1.011 1.000 1.012 1.024 1.052
Tukey 687.00 701.10 689.60 703.20 717.00 764.00 1 1.021 1.004 1.024 1.044 1.112
Scheffé 656.20 674.40 661.20 674.50 692.40 744.70 1 1.028 1.008 1.028 1.055 1.135
N-K 697.60 709.40 698.90 707.10 717.60 751.40 1 1.017 1.002 1.014 1.029 1.077
Duncan 702.00 713.60 704.10 716.70 732.30 775.40 1 1.017 1.003 1.021 1.043 1.105
Division (1 —4,5— 6)

W 387.67 428.40 406.38 418.84 454.47 531.78 1 1.105 1.048 1.080 1.172 1.372
Tukey 264.67 304.29 283.60 296.00 332.20 418.00 1 1.150 1.072 1.118 1.255 1.579
Scheffé 187.82 223.78 204.87 219.13 253.20 344.56 1 1.191 1.091 1.167 1.348 1.835
N-K 427.56 467.62 445.31 457.80 494.44 567.69 1 1.094 1.042 1.071 1.156 1.328
Duncan 310.93 350.27 327.58 341.47 379.53 465.04 1 1.127 1.054 1.098 1.221 1.496
Division (1 — 3,4 — 5,6)

W 467.29 500.93 479.02 495.31 525.31 597.91 1 1.072 1.025 1.060 1.124 1.280
Tukey 212.93 251.62 228.98 248.42 280.38 367.29 1 1.182 1.075 1.167 1.317 1.725
Scheffé 145.24 180.42 158.96 175.49 207.96 293.68 1 1.242 1.094 1.208 1.432 2.022
N-K 342.29 380.07 358.60 375.51 405.20 480.44 1 1.110 1.048 1.097 1.184 1.404
Duncan 243.71 283.67 258.47 279.67 312.13 398.44 1 1.164 1.061 1.148 1.281 1.635
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Table 2. Continued

91

Average probability

Relative to e =0

€: 0.00 0.01 0.05

0.10

0.20 0.40

0.00 0.01 0.05 0.10 0.20 0.40

Division (1 —2,3 — 4,5 — 6)

\\% 500.56 530.20 512.89 529.04 555.62 626.67 1 1.059 1.025 1.057 1.110 1.252
Tukey 199.24 238.18 209.98 229.89 264.42 353.36 1 1.195 1.054 1.154 1.327 1.773
Scheffé 131.69 166.71 145.00 160.02 194.64 279.49 1 1.266 1.101 1.215 1.478 2.122
N-K 310.36 344.49 322.31 335.91 368.47 442.24 1 1.110 1.039 1.082 1.187 1.425
Duncan 224.33 264.58 237.04 255.69 291.09 376.82 1 1.179 1.057 1.140 1.298 1.680
Division (1 - 3,4, 5, 6)

w 106.44 136.03 118.46 132.43 160.80 242.93 1 1.278 1.113 1.244 1.511 2.282
Tukey 31.37 46.77 37.34 44.89 64.63 124.08 1 1.491 1.191 1.431 2.061 3.956
Scheffé 8.32 16.09 10.76 14.33 25.28 64.50 1 1.935 1.294 1.722 3.040 7.756
N-K 155.59 190.21 168.20 183.81 217.57 305.97 1 1.223 1.081 1.181 1.398 1.967
Duncan 53.28 74.63 62.30 72.23 96.00 166.62 1 1.401 1.169 1.356 1.802 3.128
Division (1 — 2,3 — 4, 5,6)

w 139.74 173.23 152.77 167.47 199.65 289.65 1 1.240 1.093 1.198 1.429 2.073
Tukey  20.60 33.99 26.19 31.02 46.60 100.00 1 1.650 1.271 1.506 2.262 4.854
Scheffé 5.06 1042 7.18 9.53 17.18 50.13 1 2.059 1.420 1.886 3.397 9.911
N-K 110.62 139.93 121.98 135.46 162.61 245.53 1 1.265 1.103 1.225 1.470 2.220
Duncan 34.91 52.86 42.18 48.94 68.50 131.38 1 1.514 1.208 1.402 1.962 3.763
Division (1 — 2,3, 4, 5,6)

w 18.59 30.22 22.78 27.51 41.90 92.64 1 1.626 1.226 1.480 2.254 4.984
Tukey 0.62 171 1.09 158 3.70 18.01 1 2.754 1.762 2.546 5.977 29.085
Scheffe 0.05 0.13 0.07 012 045 4.38 1 2.700 1.400 2.600 9.500 92.000
N-K 30.93 46.81 37.07 44.47 63.60 127.05 1 1.513 1.198 1.438 2.056 4.107
Duncan 2.65 6543 3.60 4.85 9.97 34.86 1 2.052 1.358 1.833 3.764 13.167
Division (1,2, 3,4,5.6)

W 414 844 566 7.63 14.00 44.77 1 2.040 1.366 1.845 3.385 10.817
Tukey 0.02 0.02 003 002 014 1.72 1 1.000 1.400 1.200 7.000 86.600
Scheffé 0.00 0.00 0.00 0.00 0.00 0.22 - - - - - -
N-K 414 844 5.65 7.64 14.00 44.76 1 2.038 1.365 1.845 3.384 10.815
Duncan 0.06 0.18 0.12 0.14 0.56 5.22 1 3.067 1.933 2.333 9.467 87.733

The robustness of procedures against non-normality may be also measured by

the efficacy parameter

maX{PlvP2aP3aP4aP5,P6} - min{PlyP%P&P%I’SyPﬁ}

p

where p1,...,pe are estimated probabilities of making a correct decision by a proce-
dure for € = 0,0.01,0.05,0.1,0.2, 0.4, respectively, and p is the average of p1,...,pe.
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The procedure is more robust when its efficacy is smaller. Values of efficacy are shown
in Table 3. The parameter is very small for the division (1 - 6) and much larger for
the remaining divisions. It is interesting that we rather cannot see (except for the
difference between the first division and others) any dependence between the values of
the efficacy parameter and the division. Such a relation can be easily noticed in esti-
mated probabilities of the correct decision. Hence, it may be concluded that relative
oscillations of the probability of correct decisions are the same for all the procedures.

Table 3. Efficacy parameter

Division Tukey Scheffé N-K Duncan W
(1-6) 0.038  0.008 0.038 0.007 0.034
(1-5,6) 3.860 3.848 3.858 3.864 3.847
(1-4,5-16) 3.848 3.847  3.841 3.851 3.839
(1-3,4-6) 3.870 3.872 3.851 3.875 3.857
(1-4,5,6) 3.862 3.863 3.851 3.864 3.854
(1-3,4-5,6) 3.860 3.860 3.864 3.861 3.867
(1-2,3-4,5—-6) 3.860 3.855 3.866 3.863 3.867
(1-3,4,5,6) 3.877 3.875 3.879 3.879 3.878
(1-2,3-4,5,6) 3.873 3.870 3.880 3.871 3.880
(1-2,3,4,5,6) 3.878  3.879 3.875 3.877 3.876
(1,2,3,4,5,6) 3.871 3.871 3.871 3.871 3.871

6. Conclusions

1. Monte Carlo simulations showed that in the presence of outliers the probability
of the correct decision of procedures of multiple comparisons is higher than in the
normal case.

2. The results for a special case of six means (k = 6) were presented. Very similar
results were obtained for k =4 and k = 5. It may be expected that for other numbers
of means results will be similar. It is difficult to find exact analytical results because
formulas for appropriate probabilities are mathematically very complicated.

3. The Monte Carlo experiment was made under the assumption that the kurtosis
of the underlying distribution equals 4. It may be very interesting to know how the
considered probability depends on the kurtosis of the underlying distribution. Such
simulations are in progress.

Acknowledgement

The authors would like to express their thanks to the referee for very detailed and
helpful comments which allowed them to improve the paper. This paper was partially
supported by the KBN Grant No. 5010 109 00 23.



On the robustness of multiple comparison procedures 93

REFERENCES

Box G.E.P., Muller M.E. (1958). A note on the generation of random normal deviates. Annals
of Mathematical Statistics 29, 610~611.

Fisher R.A. (1935). The Design of Ezperiments. Edinburgh, Oliver and Boyd.

Hochberg Y., Tamhane A.C. (1988). Multiple Comparison Procedures. John Wiley & Sons.

Miller Jr. R.G. (1982). Simultaneous Statistical Inference. 2nd ed., Springer Verlag.

Tukey J.W. (1960). A survey of sampling from contaminated distributions. In: Contributions
to Probability and Statistics, I. Olkin (ed.), 448-485. Stanford University Press, Palo Alto,
CA.

Zielinski R. (1994). One-way analysis of variance under Tukey contamination: a small sample
case simulation study. In: Proceedings of the International Conference on Linear Stati-
stical Inference LINSTAT 93, T. Caliniski and R. Kala (eds.), 79-86. Kluwer Academic
Publishers.

Zielinski W. (1990). Two remarks on the comparison of simultaneous confidence intervals.
Biometrical Journal 32, 717-719.

Zielinski W. (1991). Monte Carlo comparison of multiple comparison procedures. Biometrical
Journal 34, 291-296.

Received 25 April 1998; revised 8 October 1998

O odpornosci procedur poréwnan wielokrotnych

STRESZCZENIE

Praca dotyczy badania odpornoéci procedur poréwnan wielokrotnych na nienormal-
nos¢ rozkladéw. Jako kryterium odpornogci przyjmuje si¢ prawdopodobiefistwo otrzy-
mania podzialu $rednich zgodnego z podziatem prawdziwym. Wyniki symulacji Monte
Carlo wskazujg iz prawdopodobiefistwo podjecia wlasciwej decyzji wzrasta wraz z pro-
porcja obserwacji ktére pochodza z rozkladu zanieczyszczajacego dane.

SLOWA KLUCZOWE: poréwnania wielokrotne, wnioskowanie jednoczesne, ANOVA,
odpornoéé.



